At present, 70,000 tons (the weight of a U.S. Navy battle ship) of radioactive waste is stored at temporary installations across the country. This spent fuel remains highly toxic for tens of thousands of years, and with stockpiles growing daily, the public is exposed to ever-increasing levels of environmental, economic, health and national security risks.

Spent fuel disposal is technically feasible. However, the federal government has failed to site disposal installations because it has been unable to implement a facility siting process that earns *enduring and informed consent* from local, regional, state and tribal stakeholders. This resistance is driven by a chronic political and institutional aversion to invest in the required levels of transparency and collaboration that are the hallmarks of a legitimate siting process. The combination of a poor federal track record, ongoing institutional resistance and a highly partisan political environment supports the reasoned conclusion that, *in the absence of thoughtful and persuasive leadership from outside the political arena*, a spent fuel storage solution is presently unforeseeable.

The ongoing federal stalemate on this issue (at least 2 to 3 years) provides a window of opportunity for the development of a legitimate siting process for spent nuclear fuel: a more effective siting process than the federal government could create on its own. The National Spent Fuel Collaborative (a multi-stakeholder not-for-profit) would lead this effort and borrow from similar initiatives in which federal inaction has been augmented by more representative undertakings (e.g., the Western States Water Council and the northeast’s Regional Greenhouse Gas Initiative). (Continued on next page)
“Breaking The Nuclear Waste Impasse - Progress in the Face of Federal Government Inaction”

In an otherwise empty playing field, the Collaborative would assemble the key stakeholders, borrow from best practices, collectively develop the siting protocol and then use this deliverable to both inform and influence federal nuclear waste policy.

Key areas for further discussion include:

- What are the political and regulatory implications of a third party usurping the role of the federal government and developing more effective policy?
- Policy is one issue; practice another. For the Collaborative to be successful, the federal government would need to implement the Collaborative's siting protocol. As such, the role of the federal government itself in the work of the Collaborative needs to be more fully explored.
- What are the organizational contexts and membership requirements that would make the Collaborative most successful?
- What are appropriate funding mechanisms for the Collaborative so that its work may be viewed as representative and impartial?
The Policy Studies Organization

Biography

James A. Hamilton is Founder and President of the National Spent Fuel Collaborative. With a background of executive roles in the industrial and NGO sectors, combined with teaching and research at the Massachusetts Institute of Technology, Jim provides the vision and leadership for the Collaborative.

As the Managing Director at the Conservation Law Foundation, Mr. Hamilton advised Yankee Atomic Electric Company on development and implementation of its decommissioning program for its two nuclear power plants in Connecticut and Massachusetts. He was also the lead author of the Yankee Rowe Site Closure Project Plan: the first of its kind in the nation and the roadmap for a successful spent fuel management and site closure effort.

Prior to forming the Collaborative, Jim was the Americas Vice President of Sustainability for a multinational manufacturer. He also taught at MIT’s Environmental Policy Program and has lectured at the Harvard School of Public Health and the Yale School of Forestry and Environmental Studies. Jim’s additional experience includes environmental risk management at Lockheed-Martin and technical consulting to Canada’s First Nation’s communities.

Jim earned a graduate degree in Technology and Policy from MIT and an undergraduate engineering degree from the University of British Columbia. He currently serves as Chairman of MIT’s Energy, Environment and Sustainability Global Collaboration Committee.